Hach CLT10sc Používateľská príručka

Typ
Používateľská príručka

Táto príručka je tiež vhodná pre

DOC023.98.80087
CLF10sc and CLT10sc Reagentless
Chlorine Analyzer
08/2020, Edition 5
User Manual
Benutzerhandbuch
Manuale utente
Manuel d'utilisation
Manual de usuario
Manual do utilizador
Návod k použití
Brugervejledning
Gebruikershandleiding
Instrukcja obsługi
Bruksanvisning
Ръководство за потребителя
Felhasználói kézikönyv
Manual de utilizare
Руководство пользователя
Kullanıcı Kılavuzu
Návod na použitie
Navodila za uporabo
Korisnički priručnik
Εγχειρίδιο χρήστη
Table of Contents
English..............................................................................................................................3
Deutsch.......................................................................................................................... 23
Italiano............................................................................................................................ 44
Français......................................................................................................................... 65
Español.......................................................................................................................... 86
Português.................................................................................................................... 106
Čeština......................................................................................................................... 126
Dansk............................................................................................................................147
Nederlands................................................................................................................. 168
Polski............................................................................................................................ 188
Svenska....................................................................................................................... 208
български................................................................................................................... 228
Magyar......................................................................................................................... 249
Română....................................................................................................................... 270
Русский........................................................................................................................290
Türkçe...........................................................................................................................311
Slovenský jazyk......................................................................................................... 332
Slovenski..................................................................................................................... 352
Hrvatski........................................................................................................................ 372
Ελληνικά...................................................................................................................... 392
2
Table of Contents
1 Table of contents on page 3
2 Specifications on page 3
3 General information on page 3
4 Installation on page 9
5 Operation on page 12
6 Maintenance on page 13
7 Troubleshooting on page 17
8 Replacement parts and accessories
on page 20
Section 1 Table of contents
Specifications on page 3 Maintenance on page 13
General information on page 3 Troubleshooting on page 17
Installation on page 9 Replacement parts and accessories on page 20
Operation on page 12
Section 2 Specifications
Specifications are subject to change without notice.
Specification Detail
Component description Amperometric reagentless chlorine monitoring
analyzer panel, with chlorine, flow, optional pH
combination or pHD sensor, flow cells, sc
controller and digital gateway
Operating temperature 0 to 45 °C (0 to 113 °F)
Storage temperature (panel only) –20 to 60 °C (–4 to 149 °F)
Power requirements 12 VDC ± 10%, 100 mA maximum (supplied by
sc controller)
Panel dimensions (L x W x D) 48.3 x 49.5 x 15.1 cm (19 x 19.5 x 5.95 in.) with
panel-mounted components
Weight Approximately 5.4 kg (12 lb) (panel and empty
panel-mounted components only)
Flow rate Range: 30–50 L/hour (7.9–13.2 gal/hour)
Optimal: 40 L/hour (10.5 gal/hour)
Controller platform sc controller models
Section 3 General information
In no event will the manufacturer be liable for direct, indirect, special, incidental or consequential
damages resulting from any defect or omission in this manual. The manufacturer reserves the right to
make changes in this manual and the products it describes at any time, without notice or obligation.
Revised editions are found on the manufacturer’s website.
English
3
3.1 Safety information
N O T I C E
The manufacturer is not responsible for any damages due to misapplication or misuse of this
product including, without limitation, direct, incidental and consequential damages, and disclaims
such damages to the full extent permitted under applicable law. The user is solely responsible to
identify critical application risks and install appropriate mechanisms to protect processes during a
possible equipment malfunction.
Please read this entire manual before unpacking, setting up or operating this equipment. Pay
attention to all danger and caution statements. Failure to do so could result in serious injury to the
operator or damage to the equipment.
Make sure that the protection provided by this equipment is not impaired. Do not use or install this
equipment in any manner other than that specified in this manual.
3.2 Use of hazard information
D A N G E R
Indicates a potentially or imminently hazardous situation which, if not avoided, will result in death or
serious injury.
W A R N I N G
Indicates a potentially or imminently hazardous situation which, if not avoided, could result in death
or serious injury.
C A U T I O N
Indicates a potentially hazardous situation that may result in minor or moderate injury.
N O T I C E
Indicates a situation which, if not avoided, may cause damage to the instrument. Information that
requires special emphasis.
3.3 Precautionary labels
Read all labels and tags attached to the instrument. Personal injury or damage to the instrument
could occur if not observed. A symbol on the instrument is referenced in the manual with a
precautionary statement.
This symbol, if noted on the instrument, references the instruction manual for operation
and/or safety information.
Electrical equipment marked with this symbol may not be disposed of in European
domestic or public disposal systems. Return old or end-of-life equipment to the
manufacturer for disposal at no charge to the user.
3.4 Product overview
This product is primarily intended for use in municipal drinking-water applications. Wastewater and
industrial applications must be identified to be applicable by the manufacturer before installation.
The Reagentless Chlorine Analyzer monitors the concentration of free or total residual chlorine in
water, and is most reliable at residual chlorine concentrations higher than 0.1 ppm (mg/L). The
combination of a sc model controller with a three-electrode chlorine sensor, optional pH sensor and a
flow sensor give the best monitoring function. Both sensors read sample temperature. The pH sensor
transmits the temperature reading to the controller display. The chlorine sensor uses its temperature
4
English
measurement internally and does not transmit the measurement to the controller display. A pressure
regulator kit and an acidification and cleaning kit are available as accessories.
The chlorine and pH sensors rest in panel-mounted, series-connected flow cells. The flow cells
maintain the sensor-to-sample contact and help prevent the sensors from drying out when the
system is not in operation. Figure 1, Figure 2, Figure 3 show overviews of the system and the flow
cells.
Each sensor connects to the controller through the gateway mounted on the panel. The gateway
converts analog signals from the sensors to digital signals used by the controller. The controller
converts the digital signals to the chlorine, pH and temperature measurement values and shows the
readings in the display. The controller supplies power to the sensors and to the digital gateway.
The controller can be configured to cause an alarm condition or warning if measurement values rise
above or fall below specified values. For information on controller alarms, refer to the controller user
manual.
Note: Refer to the sensor user manual for information about how to store the sensors when the system is not in
operation.
Two analyzer configurations are available: a Grab Sample option (without pH sensor) and a pH
option. The Grab Sample option includes the mounting panel, the chlorine sensor and flow cell, a pH
flow cell without sensor, a flow sensor, the digital gateway and the controller. The pH option includes
these items plus a pH sensor.
A flow control valve regulates the sample flow. A constant flow rate of 30-50 L/h is recommended for
correct sensor operation (see Figure 1). The optimal flow rate is 40 L/hour. A single LED on the flow
sensor shows if the sample flow rate is sufficient. If the LED is not on, the flow rate must be adjusted
until the LED is on. The exact flow rate is not important as long as the LED is on, but the flow must
stay constant within the specifications.
English 5
Figure 1 System overview
1 Controller 7 Sample in
2 Gateway 8 Valve, shutoff (customer-supplied)
3 Chlorine sensor cable 9 Chlorine flow cell
4 pH sensor (optional) 10 Flow sensor cable
5 Sample drain 11 Chlorine sensor
6 pH flow cell
6 English
Figure 2 Chlorine flow cell overview
1 Flow sensor 9 Valve, cleaning port, 1/4 in. OD tube
2 Plug, 1/8 in. NPTF 10 Flow cell inlet
English: Speed–fit fitting—1/4 in. OD
tube
Metric: Speed–fit fitting—6 mm OD tube
3 Plug, 1/2 in. NPTF 11 Flow cell
4 Lock ring 12 Flow control valve
5 Sealing hub 13 Float
6 O-ring 14 Float alignment mark; MIN
7 Sample out fitting
English: Speed–fit fitting—3/8 in. OD tube
Metric: Speed–fit fitting—10 mm OD tube
15 Float alignment mark; MAX
8 Chlorine sensor alignment mark
English 7
Figure 3 pH flow cell overview
1 Lock ring 4 Sample out fitting
English: Speed–fit elbow fitting—1/2 in. OD
Metric: Speed–fit elbow fitting—12 mm OD
2 Sealing blank 5 Grab sample port
3 O-ring 6 Flow cell inlet
English: Speed–fit fitting—3/8 in. OD
Metric: Speed–fit fitting—10 mm OD
3.5 Product components
Make sure that all components have been received. Refer to Figure 1 on page 6. If any items are
missing or damaged, contact the manufacturer or a sales representative immediately.
8
English
Figure 4 Reagentless chlorine analyzer panel
1 System panel 3 Tubing, 12 mm (½ in.)
2 Connector cable for connecting gateway to
controller, 1 m (3.3 ft)
4 Chlorine sensor
Section 4 Installation
4.1 Installation considerations
Do the mechanical installation tasks first, the electrical installation tasks second, and the plumbing
installation tasks last.
All fittings are designed to be tightened by hand only.
The panel is designed to be wall or rack mounted indoors. Mount or position the panel in an
accessible location.
Do not place the panel next to a heat source.
Do not mount the panel in an environment with frequent vibrations
Do not mount the panel in direct sunlight, which may affect chlorine readings.
Install the panel indoors or in an environmental enclosure.
Prevent condensation from collecting on the panel and panel components, especially the flow cell,
sensor and where the sensor and cable connect.
Use PFA or PVDF linear low-density polyethylene tubing for the sample supply line and keep the
tubing as short as possible to minimize lag time.
Sample pressure must be sufficient to keep a continuous water supply to the sensors. An LED
indicator on the flow sensor will be lit as long as the flow is sufficient.
Keep the flow rate as constant as possible for best sensor operation.
4.2 Sample line guidelines
Select a good, representative sampling point for the best instrument performance. The sample must
be representative of the entire system.
To prevent erratic readings:
Collect samples from locations that are sufficiently distant from points of chemical additions to the
process stream.
Make sure that the samples are sufficiently mixed.
English
9
Make sure that all chemical reactions are complete.
4.3 Mechanical installation
4.3.1 Mount the panel
Figure 5 shows the mounting dimensions. Refer to the figure and follow the steps to mount the panel.
1. Attach mounting screws to the mounting surface. Mount on wall studs or use wall anchors. Leave
enough room between the head of each screw and the mounting surface so the panel will fit in
between.
2. Slide the panel mounting holes over the heads of the mounting screws and allow the panel to
slide down until the top of each mounting hole rests on the screw body.
3. Tighten each screw to secure the panel to the mounting surface.
4. Install the chlorine and pH sensor (optional) in the flow cells. For information on how to install a
sensors, refer to the sensor user manual.
Figure 5 Reagentless chlorine analyzer panel dimensions
10 English
4.4 Electrical installation
4.4.1 Wire the panel
W A R N I N G
Potential Electrocution Hazard. Always disconnect power to the instrument when making
electrical connections.
The controller supplies power to the sensors and the digital gateway.
1. Remove power from the controller.
2. Connect the pH sensor (optional) wires to the gateway. For information on how to install sensors
in the flow cells, or how to connect the sensor to the gateway, refer to the sensor user manual.
3. Connect the chlorine sensor to the gateway. For information on how to connect the sensor to the
gateway, refer to the sensor user manual. Carefully read the labels on the cable connectors to
avoid mismatches.
Note: When the panel is shipped, the chlorine sensor cable is taped to the front of the panel near the location
of the sensor connection.
4. Connect the controller to the gateway with the 1 m connector cable that is supplied with the
panel. Connect the controler to the power source only when all other connections are finished
and checked.
4.5 Plumbing
4.5.1 Plumb the panel
Make sure to follow the size specifications for all panel tubing and fittings. The flow path must
increase in diameter as water flows through the system to prevent build-up of backpressure. Figure 1
on page 6 shows an overview of the plumbing connections.
1. Attach tubing to the sample inlet and outlet fittings.
2. Make sure the cleaning port on the chlorine flow cell is closed.
3. Make sure the grab sample port on the pH flow cell is closed.
4. Install chlorine and pH (optional) sensors according to the instructions foun in the corresponding
user manuals, prior to running the sample through the system.
5. Open the flow valve on the sample line and allow water to move through the system.
6. Make sure there are no leaks from the tubing, valve fittings or the flow cells.
7. To minimize air bubbles, the pH flow cell may be tilted between 0º and 30º as shown in Figure 6.
English
11
Figure 6 pH flow cell tilt
Section 5 Operation
5.1 User navigation
Refer to the controller documentation for keypad description and navigation information.
Push the RIGHT arrow key on the controller multiple times to show more information on the home
screen and to show a graphical display.
5.2 System configuration
Sensor configuration and calibration are done through the controller user interface. For more
information on how to configure or calibrate a sensor, refer to the sensor user manual.
An sc model controller must be connected to the gateway.
1. From the controller main menu, select Sensor Setup.
The Chlorine Gateway (CGW) Setup menu is displayed.
2. Select Configure and customize the entries. Confirm after each entry to save the changes and go
back to the Configure menu.
Option Description
Edit name Edit the sensor name
12 English
Option Description
Select Parameter—Chlorine (Total or
Free), pH (optional), Temperature
(optional)
Selects the parameter to be configured. Configuring
the selected parameter requires additional steps.
Refer to the sensor user manual for more
information.
Reset Defaults—Confirm to do the
reset.
Resets all settings to the factory default values.
5.3 System start up
Make sure all mechanical, electrical and plumbing tasks have been correctly done before starting
flow through the system.
1. Apply power to the controller.
When powered on for the first time, the controller displays the Language, Date Format and
Date/Time screens in order.
2. Set the language, date and time in the controller if this has not been done. Refer to the controller
user manual for more information on how to set these options.
The controller scans for connected devices.
3. Make sure the cleaning port and the grab sample port are closed, then open the ON/OFF valve
on the sample line to start the flow of water through the system.
The chlorine and pH flow cells will fill with water.
4. Make sure the flow sensor LED is on and the float is between the MIN and MAX marks. If the
LED is not on, adjust the flow control valve to increase or decrease the flow.
The flow sensor LED will be on when the flow is sufficient for good sensor operation. If the flow is
too high, the LED may not be lit. Make sure the float is between the MIN and MAX marks.
5. Check for leaks or blockages in the tubing and the flow cells. Shut off the flow to the panel if any
problems are discovered and make the necessary repairs.
6. When the system has sufficient flow, clear any warnings that appear on the controller display by
following the on-screen messages and prompts.
7. Push the HOME key.
The main measurement screen appears and shows the chlorine, temperature and pH (if a pH
sensor is connected) measurement values.
Section 6 Maintenance
C A U T I O N
Multiple hazards. Only qualified personnel must conduct the tasks described in this
section of the document.
6.1 Tubing replacement
Replace the tubing at least once a year. Replace brittle, cracked or leaky tubing immediately.
Replace old, discolored, fouled or damaged tubing with tubing of the same diameter and type (PFA
or PVDF tubing is preferred).
6.2 Clean a sensor flow cell
Clean a flow cell as necessary to remove deposits. Clean a flow cell if it becomes heavily
contaminated. Replace a flow cell if it becomes damaged, discolored or not transparent. It is not
necessary to remove a flow cell from the panel in order to clean it.
English
13
Note: Never use detergents or surfactants to clean a chlorine flow cell.
1. Stop the source flow to the panel.
2. Remove the chlorine sensor and put the sensor in a container filled with a sample of the
chlorinated water.
Note: Do not disconnect the sensor from the power. If power is removed from the chlorine sensor, the sensor
must be conditioned and calibrated before use.
Note: The removal of a sensor from a flow cell with the sensor cable attached will cause a change in the sensor
signal outputs. Refer to the controller manual for more information on the Hold Output feature.
3. Rinse the flow cell with water and scrub the flow cell with a soft bristle brush to remove deposits.
4. Rinse the flow cell with water.
5. If the flow cell is not sufficiently clean, soak the flow cell for 10 to 15 minutes in a 1:3 mixture of
3-5% hydrogen peroxide solution and vinegar.
Note: Commercial rust removal liquids may be used in case of heavy contamination. However, this is not
recommended because they can cause damage to the flow cell material.
6. Rinse the flow cell with water.
7. Install the sensor in the flow cell and start the sample flow.
6.3 Replace the flow sensor
Under normal conditions, the flow sensor does not require regular maintenance or replacement.
However, if the LED flow indicator does not light when the float is between the MIN and MAX marks
and power is applied, the sensor may need to be replaced. To replace the flow sensor, do the
illustrated steps that follow.
Note: It is not necessary to remove the chlorine sensor, drain the flow cell or power down the controller to replace
the flow sensor.
14 English
English 15
6.4 Replace the flow control valve assembly
16 English
Section 7 Troubleshooting
7.1 Event log
The controller provides one event log for each sensor. The event log stores a variety of events that
occur on the devices such as calibrations done, calibration options changed, etc. A list of possible
events is shown below. The event log can be read out in a CSV format. For instructions on
downloading the logs, refer to the controller user manual.
Table 1 Event log
Event Description
Power On The power was turned on.
Flash Failure The external flash has failed or is corrupted.
1pointpHCalibration_Start Start of one-point sample calibration for pH
1pointpHCalibration_End End of one-point sample calibration for pH
2pointpHCalibration_Start Start of two-point sample calibration for pH
2pointpHCalibration_End End of two-point sample calibration for pH
1pointBufferpHCalibration_Start Start of one-point buffer calibration for pH
1pointBufferpHCalibration_End End of one-point buffer calibration for pH
2pointBufferpHCalibration_Start Start of two-point buffer calibration for pH
2pointBufferpHCalibration_End End of two-point buffer calibration for pH
TempCalibration_Start Start of temperature calibration
TempCalibration_End End of temperature calibration
1pointChemZeroCL2_Start Start of one-point chemical zero calibration for chlorine
1pointChemZeroCL2_End End of one-point chemical zero calibration for chlorine
1pointElecZeroCL2_Start Start of one-point electrical zero calibration for chlorine
1pointElecZeroCL2_End End of one-point electrical zero calibration for chlorine
1pointProcessConc_Start Start of one-point process concentration for chlorine
1pointProcessConc _End End of one-point process concentration for chlorine
2pointChemCL2_Start Start of two-point chemical calibration for chlorine
2pointChemCL2_End End of two-point chemical calibration for chlorine
2pointElecCL2_Start Start of two-point electrical calibration for chlorine
2pointElecCL2_End End of two-point electrical calibration for chlorine
CL2CalSetDefault The chlorine calibration was reset to the default.
pHCalSetDefault The pH calibration data was reset to the default.
TempCalSetDefault The temperature calibration data was reset to the default.
AllCalSetDefault All sensor calibration data was reset to the default.
CL2CalOptionChanged The chlorine calibration option was changed.
pHCalOptionChanged The pH calibration option was changed.
English 17
Table 1 Event log (continued)
Event Description
TempCalOptionChanged The temperature calibration option was changed.
SensorConfChanged The sensor configuration was changed.
ResetCL2CalHist The CL2 calibration history was reset.
ResetpH CalHist The pH calibration history was reset.
ResetTemp CalHist The temperature calibration history was reset.
ResetAllSensorsCalHist All sensor calibration history was reset.
ResetCL2Sensor The CL2 calibration data (sensor days, calibration history and
calibration data) was reset to the default.
ResetpHSensor The pH calibration data (sensor days, calibration history and
calibration data) was reset to the default.
ResetTempSensor The temperature calibration data (sensor days, calibration history
and calibration data) was reset to the default.
ResetAllSensors All sensor calibration data (sensor days, calibration history and
calibration data) was reset to the default.
Flow Detection The state of the proximity sensor has changed (sufficient or not
sufficient flow).
7.2 Error list
Errors may occur for various reasons. The sensor reading on the measurement screen flashes. All
outputs are held when specified in the controller menu. To show the sensor errors, push the MENU
key and select Sensor Diag, Error List. A list of possible errors is shown below.
Table 2 Error list for the sensor
Error Description Resolution
CL CAL REQD A chlorine calibration and/or pH
calibration is required.
The chlorine and/or pH measurement
has changed enough to cause a Cal
Watch alarm to occur. Refer to the
chlorine sensor manual for more
information.
Calibrate the chlorine sensor and/or pH
sensor.
CL MAINT
REQD
Chlorine sensor maintenance is
required.
The slope is less than 30% or more
than 300% of the default.
The default slope is 100 mV/ppm
(100%).
Do sensor maintenance and then
repeat the calibration, or replace the
sensor. Refer to the chlorine sensor
manual for more information.
CL MAINT
REQD
Chlorine sensor maintenance is
required.
The offset is too high (more than
±50 mV).
Do sensor maintenance and then
repeat the calibration, or replace the
sensor. Refer to the chlorine sensor
manual for more information.
PH TOO LOW The pH value is less than 0 pH. Calibrate or replace the pH sensor.
PH TOO HIGH The pH value is more than 14 pH.
18 English
Table 2 Error list for the sensor (continued)
Error Description Resolution
PH SLOPE FAIL The slope is outside of the -45 to
-65 mV/pH range.
Clean the pH sensor, then repeat the
calibration with a fresh buffer or sample,
or replace the sensor.
PH OFFSET
FAIL
The offset is outside of ±60 mV. Clean the pH sensor and then repeat
the calibration with a fresh buffer or
sample, or replace the sensor.
PH OFFSET
FAIL
The offset is outside of ±60 mV. Clean the pH sensor and replace the
salt bridge and standard cell solution.
Repeat the calibration with a fresh
buffer or sample, or replace the sensor.
TEMP TOO
LOW
The temperature is less than 0 °C. Calibrate the temperature or replace the
pH sensor.
TEMP TOO
HIGH
The temperature is more than 100 °C.
TEMP FAIL The offset is higher than 5.0 °C or
lower than -5.0 °C.
Calibrate the temperature or replace the
pH sensor.
NO FLOW The flow level is too low. Increase the flow.
7.3 Warning list
A warning does not affect the operation of menus, relays and outputs. A warning icon flashes and a
message is shown on the bottom of the measurement screen. To show the sensor warnings, push
the MENU key and select Sensor Diag, Warning List. A list of possible warnings is shown below.
Table 3 Warning list for the sensor
Warning Description Resolution
CL CAL RECD A chlorine and/or pH calibration is
recommended.
The chlorine and/or pH measurement has
changed enough to cause a Cal Watch warning
alarm to occur. Refer to the sensor manuals for
more information.
Calibrate the chlorine sensor
and/or pH sensor.
CL CAL RECD A chlorine calibration is recommended.
Chlorine calibration data is not available (sensor
with default calibration data).
Calibrate the chlorine sensor.
PH CAL RECD A pH calibration is recommended.
pH calibration data is not available (sensor with
default calibration data).
Calibrate the pH sensor.
TEMP CAL
RECD
A temperature calibration is recommended.
Temperature calibration data is not available
(sensor with default calibration data).
Calibrate the temperature.
CL CAL TO DO The Sensor Days value for the chlorine sensor
is greater than the Cal Reminder value.
Calibrate the chlorine sensor.
PH CAL TO DO The Sensor Days value for the pH sensor is
greater than the Cal Reminder value.
Calibrate the pH sensor.
English 19
Table 3 Warning list for the sensor (continued)
Warning Description Resolution
TEMP CAL TO
DO
The Sensor Days value for the temperature
sensor is greater than the Cal Reminder value.
Calibrate the temperature.
CL MAINT
RECD
Chlorine sensor maintenance is recommended.
The slope is 30 to 45% of default or the slope is
250 to 300% of default.
The default slope is 100 mV/ppm (100%).
Do sensor maintenance and
then repeat the calibration, or
replace the sensor.
CL MAINT
RECD
Chlorine sensor maintenance is recommended.
The offset is -50 mV to 45 mV or the offset is
45 mV to 50 mV.
Do sensor maintenance and
then repeat the calibration, or
replace the sensor.
PH MAINT
RECD
pH sensor maintenance is recommended.
The slope is outside of the -50 to -61 mV/pH
range.
Clean the pH sensor, then
repeat the calibration with a
fresh buffer or sample, or
replace the sensor.
PH MAINT
RECD
pH sensor maintenance is recommended.
The offset is outside of ±45 mV but within
±60 mV.
Clean the sensor and then
repeat the calibration, or
replace the sensor.
PH MAINT
RECD
pH sensor maintenance is recommended.
The offset is outside of ±45 mV but within
±60 mV.
Clean the sensor and replace
the salt bridge and standard
cell solution and then repeat
the calibration, or replace the
sensor.
T MAINT RECD The temperature offset is outside of ±3 °C but
within ±5 °C.
Calibrate the temperature.
Section 8 Replacement parts and accessories
W A R N I N G
Personal injury hazard. Use of non-approved parts may cause personal injury, damage
to the instrument or equipment malfunction. The replacement parts in this section are
approved by the manufacturer.
Note: Product and Article numbers may vary for some selling regions. Contact the appropriate distributor or refer to
the company website for contact information.
Parts
Description Item no.
Cable, gateway to controller, 1 m 6122400
Cable assembly, 4 pin, shielded, flow sensor, 2 m 9160900
Cable assembly, 5 pin, shielded, M12, chlorine sensor, 1 m 9160300
Fitting, inlet port for chlorine flow cell
9159200 (1/4 in.)
9196400 (6 mm)
Fitting, speed fit, outlet port for chlorine flow cell or inlet port for pH flow cell
9159300 (3/8 in.)
9196500 (10 mm)
20 English
  • Page 1 1
  • Page 2 2
  • Page 3 3
  • Page 4 4
  • Page 5 5
  • Page 6 6
  • Page 7 7
  • Page 8 8
  • Page 9 9
  • Page 10 10
  • Page 11 11
  • Page 12 12
  • Page 13 13
  • Page 14 14
  • Page 15 15
  • Page 16 16
  • Page 17 17
  • Page 18 18
  • Page 19 19
  • Page 20 20
  • Page 21 21
  • Page 22 22
  • Page 23 23
  • Page 24 24
  • Page 25 25
  • Page 26 26
  • Page 27 27
  • Page 28 28
  • Page 29 29
  • Page 30 30
  • Page 31 31
  • Page 32 32
  • Page 33 33
  • Page 34 34
  • Page 35 35
  • Page 36 36
  • Page 37 37
  • Page 38 38
  • Page 39 39
  • Page 40 40
  • Page 41 41
  • Page 42 42
  • Page 43 43
  • Page 44 44
  • Page 45 45
  • Page 46 46
  • Page 47 47
  • Page 48 48
  • Page 49 49
  • Page 50 50
  • Page 51 51
  • Page 52 52
  • Page 53 53
  • Page 54 54
  • Page 55 55
  • Page 56 56
  • Page 57 57
  • Page 58 58
  • Page 59 59
  • Page 60 60
  • Page 61 61
  • Page 62 62
  • Page 63 63
  • Page 64 64
  • Page 65 65
  • Page 66 66
  • Page 67 67
  • Page 68 68
  • Page 69 69
  • Page 70 70
  • Page 71 71
  • Page 72 72
  • Page 73 73
  • Page 74 74
  • Page 75 75
  • Page 76 76
  • Page 77 77
  • Page 78 78
  • Page 79 79
  • Page 80 80
  • Page 81 81
  • Page 82 82
  • Page 83 83
  • Page 84 84
  • Page 85 85
  • Page 86 86
  • Page 87 87
  • Page 88 88
  • Page 89 89
  • Page 90 90
  • Page 91 91
  • Page 92 92
  • Page 93 93
  • Page 94 94
  • Page 95 95
  • Page 96 96
  • Page 97 97
  • Page 98 98
  • Page 99 99
  • Page 100 100
  • Page 101 101
  • Page 102 102
  • Page 103 103
  • Page 104 104
  • Page 105 105
  • Page 106 106
  • Page 107 107
  • Page 108 108
  • Page 109 109
  • Page 110 110
  • Page 111 111
  • Page 112 112
  • Page 113 113
  • Page 114 114
  • Page 115 115
  • Page 116 116
  • Page 117 117
  • Page 118 118
  • Page 119 119
  • Page 120 120
  • Page 121 121
  • Page 122 122
  • Page 123 123
  • Page 124 124
  • Page 125 125
  • Page 126 126
  • Page 127 127
  • Page 128 128
  • Page 129 129
  • Page 130 130
  • Page 131 131
  • Page 132 132
  • Page 133 133
  • Page 134 134
  • Page 135 135
  • Page 136 136
  • Page 137 137
  • Page 138 138
  • Page 139 139
  • Page 140 140
  • Page 141 141
  • Page 142 142
  • Page 143 143
  • Page 144 144
  • Page 145 145
  • Page 146 146
  • Page 147 147
  • Page 148 148
  • Page 149 149
  • Page 150 150
  • Page 151 151
  • Page 152 152
  • Page 153 153
  • Page 154 154
  • Page 155 155
  • Page 156 156
  • Page 157 157
  • Page 158 158
  • Page 159 159
  • Page 160 160
  • Page 161 161
  • Page 162 162
  • Page 163 163
  • Page 164 164
  • Page 165 165
  • Page 166 166
  • Page 167 167
  • Page 168 168
  • Page 169 169
  • Page 170 170
  • Page 171 171
  • Page 172 172
  • Page 173 173
  • Page 174 174
  • Page 175 175
  • Page 176 176
  • Page 177 177
  • Page 178 178
  • Page 179 179
  • Page 180 180
  • Page 181 181
  • Page 182 182
  • Page 183 183
  • Page 184 184
  • Page 185 185
  • Page 186 186
  • Page 187 187
  • Page 188 188
  • Page 189 189
  • Page 190 190
  • Page 191 191
  • Page 192 192
  • Page 193 193
  • Page 194 194
  • Page 195 195
  • Page 196 196
  • Page 197 197
  • Page 198 198
  • Page 199 199
  • Page 200 200
  • Page 201 201
  • Page 202 202
  • Page 203 203
  • Page 204 204
  • Page 205 205
  • Page 206 206
  • Page 207 207
  • Page 208 208
  • Page 209 209
  • Page 210 210
  • Page 211 211
  • Page 212 212
  • Page 213 213
  • Page 214 214
  • Page 215 215
  • Page 216 216
  • Page 217 217
  • Page 218 218
  • Page 219 219
  • Page 220 220
  • Page 221 221
  • Page 222 222
  • Page 223 223
  • Page 224 224
  • Page 225 225
  • Page 226 226
  • Page 227 227
  • Page 228 228
  • Page 229 229
  • Page 230 230
  • Page 231 231
  • Page 232 232
  • Page 233 233
  • Page 234 234
  • Page 235 235
  • Page 236 236
  • Page 237 237
  • Page 238 238
  • Page 239 239
  • Page 240 240
  • Page 241 241
  • Page 242 242
  • Page 243 243
  • Page 244 244
  • Page 245 245
  • Page 246 246
  • Page 247 247
  • Page 248 248
  • Page 249 249
  • Page 250 250
  • Page 251 251
  • Page 252 252
  • Page 253 253
  • Page 254 254
  • Page 255 255
  • Page 256 256
  • Page 257 257
  • Page 258 258
  • Page 259 259
  • Page 260 260
  • Page 261 261
  • Page 262 262
  • Page 263 263
  • Page 264 264
  • Page 265 265
  • Page 266 266
  • Page 267 267
  • Page 268 268
  • Page 269 269
  • Page 270 270
  • Page 271 271
  • Page 272 272
  • Page 273 273
  • Page 274 274
  • Page 275 275
  • Page 276 276
  • Page 277 277
  • Page 278 278
  • Page 279 279
  • Page 280 280
  • Page 281 281
  • Page 282 282
  • Page 283 283
  • Page 284 284
  • Page 285 285
  • Page 286 286
  • Page 287 287
  • Page 288 288
  • Page 289 289
  • Page 290 290
  • Page 291 291
  • Page 292 292
  • Page 293 293
  • Page 294 294
  • Page 295 295
  • Page 296 296
  • Page 297 297
  • Page 298 298
  • Page 299 299
  • Page 300 300
  • Page 301 301
  • Page 302 302
  • Page 303 303
  • Page 304 304
  • Page 305 305
  • Page 306 306
  • Page 307 307
  • Page 308 308
  • Page 309 309
  • Page 310 310
  • Page 311 311
  • Page 312 312
  • Page 313 313
  • Page 314 314
  • Page 315 315
  • Page 316 316
  • Page 317 317
  • Page 318 318
  • Page 319 319
  • Page 320 320
  • Page 321 321
  • Page 322 322
  • Page 323 323
  • Page 324 324
  • Page 325 325
  • Page 326 326
  • Page 327 327
  • Page 328 328
  • Page 329 329
  • Page 330 330
  • Page 331 331
  • Page 332 332
  • Page 333 333
  • Page 334 334
  • Page 335 335
  • Page 336 336
  • Page 337 337
  • Page 338 338
  • Page 339 339
  • Page 340 340
  • Page 341 341
  • Page 342 342
  • Page 343 343
  • Page 344 344
  • Page 345 345
  • Page 346 346
  • Page 347 347
  • Page 348 348
  • Page 349 349
  • Page 350 350
  • Page 351 351
  • Page 352 352
  • Page 353 353
  • Page 354 354
  • Page 355 355
  • Page 356 356
  • Page 357 357
  • Page 358 358
  • Page 359 359
  • Page 360 360
  • Page 361 361
  • Page 362 362
  • Page 363 363
  • Page 364 364
  • Page 365 365
  • Page 366 366
  • Page 367 367
  • Page 368 368
  • Page 369 369
  • Page 370 370
  • Page 371 371
  • Page 372 372
  • Page 373 373
  • Page 374 374
  • Page 375 375
  • Page 376 376
  • Page 377 377
  • Page 378 378
  • Page 379 379
  • Page 380 380
  • Page 381 381
  • Page 382 382
  • Page 383 383
  • Page 384 384
  • Page 385 385
  • Page 386 386
  • Page 387 387
  • Page 388 388
  • Page 389 389
  • Page 390 390
  • Page 391 391
  • Page 392 392
  • Page 393 393
  • Page 394 394
  • Page 395 395
  • Page 396 396
  • Page 397 397
  • Page 398 398
  • Page 399 399
  • Page 400 400
  • Page 401 401
  • Page 402 402
  • Page 403 403
  • Page 404 404
  • Page 405 405
  • Page 406 406
  • Page 407 407
  • Page 408 408
  • Page 409 409
  • Page 410 410
  • Page 411 411
  • Page 412 412
  • Page 413 413
  • Page 414 414

Hach CLT10sc Používateľská príručka

Typ
Používateľská príručka
Táto príručka je tiež vhodná pre